Learning Word Embeddings for a Latin Corpus

Nate Stringham

Advisor: Dr. Mike Izbicki

Pomona College

April 10, 2020

Nate Stringham (Pomona College)

• You're visiting a long lost cousin in the U.S. state of Wisconsin

- You're visiting a long lost cousin in the U.S. state of Wisconsin
- It's a nice sunny day so you've decided to spend some time at a local park

- You're visiting a long lost cousin in the U.S. state of Wisconsin
- It's a nice sunny day so you've decided to spend some time at a local park
- Soon the heat starts to get to you and you find yourself in need of a drink

- You're visiting a long lost cousin in the U.S. state of Wisconsin
- It's a nice sunny day so you've decided to spend some time at a local park
- Soon the heat starts to get to you and you find yourself in need of a drink
- Luckily you see a local and ask them if they could point you to a drinking fountain

- You're visiting a long lost cousin in the U.S. state of Wisconsin
- It's a nice sunny day so you've decided to spend some time at a local park
- Soon the heat starts to get to you and you find yourself in need of a drink
- Luckily you see a local and ask them if they could point you to a drinking fountain
- Their response: 'There's a bubbler just over there!'

Humans are great at natural language processing (NLP)

- Humans are great at natural language processing (NLP)
- In the second second

- Humans are great at natural language processing (NLP)
- In the second second
 - Semantics

- Humans are great at natural language processing (NLP)
- Installanguage data is complex
 - Semantics
 - Syntax

- Humans are great at natural language processing (NLP)
- In the second second
 - Semantics
 - Syntax
 - ... and many more

- Humans are great at natural language processing (NLP)
- Installanguage data is complex
 - Semantics
 - Syntax
 - ... and many more
- Ontext is key

- Humans are great at natural language processing (NLP)
- In the second second
 - Semantics
 - Syntax
 - ... and many more
- Ontext is key

Need a mathematical representation for natural language data!

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$are = egin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$going = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$to = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

 $V = \{\texttt{we}, \texttt{are}, \texttt{going}, \texttt{to}, \texttt{create}, \texttt{some}, \texttt{latin}, \texttt{word}, \texttt{embeddings}\}$

reate =
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

C

(**A**)

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$some = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

 $V = \{\texttt{we}, \texttt{are}, \texttt{going}, \texttt{to}, \texttt{create}, \texttt{some}, \texttt{latin}, \texttt{word}, \texttt{embeddings}\}$

$$atin = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

٦

. . .

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$vord = egin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Definition

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

embeddings =
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

We say a vocabulary of words has been one-hot-encoded if

- each word is represented by a vector with dimension equal to the size of the vocabulary
- the entries of the vectors corresponds to a specific word in the vocabulary.
- the *i*th word in our vocabulary is represented by a vector with a value of 1 in the *i*th entry and 0 in all other entries.

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$we = \begin{pmatrix} 0.98 \\ -1.45 \\ 0.22 \\ 0.06 \\ -3.78 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$\mathtt{are} = egin{pmatrix} 5.23 \ 0.63 \ 0.28 \ 0.06 \ 0.40 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$\texttt{going} = \begin{pmatrix} -0.32\\ 0.33\\ 2.79\\ 0.45\\ 0.73 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$to = \begin{pmatrix} 1.98\\ 0.88\\ 0.23\\ 0.03\\ 3.40 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$\texttt{create} = \begin{pmatrix} 0.41 \\ 0.60 \\ -0.42 \\ 0.55 \\ 0.78 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$\texttt{some} = \begin{pmatrix} 0.88 \\ -0.45 \\ -0.23 \\ 0.06 \\ 0.69 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

$$\texttt{latin} = \begin{pmatrix} 3.20\\ 0.51\\ -0.72\\ 0.08\\ 1.50 \end{pmatrix}$$
A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

 $V = \{\texttt{we}, \texttt{are}, \texttt{going}, \texttt{to}, \texttt{create}, \texttt{some}, \texttt{latin}, \texttt{word}, \texttt{embeddings}\}$

$$\texttt{word} = \begin{pmatrix} -0.47\\ 0.45\\ 0.97\\ 0.68\\ -0.78 \end{pmatrix}$$

A word embedding is a vector $w_i \in \mathbb{R}^n$ where w_i represents the *i*th word in the vocabulary.

 $V = \{\texttt{we}, \texttt{are}, \texttt{going}, \texttt{to}, \texttt{create}, \texttt{some}, \texttt{latin}, \texttt{word}, \texttt{embeddings}\}$

embeddings =
$$\begin{pmatrix} 6.23 \\ -0.78 \\ 0.93 \\ -0.03 \\ 0.44 \end{pmatrix}$$

We say a vocabulary of words has been one-hot encoded if

- the dimension of each vector is equal to the size of the vocabulary
- the *i*th word in the vocabulary is represented by a vector with a value of 1 in the *i*th entry and 0 in all other entries.

Definition

An embedding is said to have a **distributed** representation if each word is represented by a vector of weights where each entry is a real number.

We say a vocabulary of words has been one-hot encoded if

- the dimension of each vector is equal to the size of the vocabulary
- the *i*th word in the vocabulary is represented by a vector with a value of 1 in the *i*th entry and 0 in all other entries.

Definition

An embedding is said to have a **distributed** representation if each word is represented by a vector of weights where each entry is a real number.

Key Difference

One-hot are sparse and large, distributed are dense and small!

• method for creating ditributed word embeddings.

- method for creating ditributed word embeddings.
- 'looks' at words in context

- method for creating ditributed word embeddings.
- 'looks' at words in context

- method for creating ditributed word embeddings.
- 'looks' at words in context

"Flectere si nequeo superos Acheronta movebo".

- method for creating ditributed word embeddings.
- 'looks' at words in context

"Flectere si nequeo superos Acheronta movebo".

Architectures

• Continuous Bag of Words (CBOW)

- method for creating ditributed word embeddings.
- 'looks' at words in context

"Flectere si nequeo superos Acheronta movebo".

- Continuous Bag of Words (CBOW)
 - maximize the probability of predicting target words from context

- method for creating ditributed word embeddings.
- 'looks' at words in context

"Flectere si nequeo superos Acheronta movebo".

- Continuous Bag of Words (CBOW)
 - maximize the probability of predicting target words from context
- Skipgram

- method for creating ditributed word embeddings.
- 'looks' at words in context

"Flectere si nequeo superos Acheronta movebo".

- Continuous Bag of Words (CBOW)
 - maximize the probability of predicting target words from context
- Skipgram
 - maximize the probability of predicting context words from target

Learning using a skipgram

Given a corpus of words w_1, w_2, \ldots, w_T the skipgram minimizes

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$
(1)

Learning using a skipgram

Given a corpus of words w_1, w_2, \ldots, w_T the skipgram minimizes

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$
(1)

where

$$p(a|b) = \frac{\exp(v_a^{\prime \top} v_b)}{\sum_{w=1}^{W} \exp(v_w^{\prime \top} v_b)}$$
(2)

where W is the size of our vocabulary and v'_w and v_w are the input and output vector representations of word w.

Learning using a skipgram

Given a corpus of words w_1, w_2, \ldots, w_T the skipgram minimizes

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$
(1)

where

$$p(a|b) = \frac{\exp(v_a^{\prime \top} v_b)}{\sum_{w=1}^{W} \exp(v_w^{\prime \top} v_b)}$$
(2)

where W is the size of our vocabulary and v_w^\prime and v_w are the input and output vector representations of word w.

The weights for each word are updated using stochastic gradient descent

$$w^{t+1} = w^t + \eta_t \frac{\partial}{\partial w} \ell(w) \tag{3}$$

What (if anything) makes training Latin word embeddings different?Latin is "morphologically rich"

- Latin is "morphologically rich"
 - 5 declensions

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses
 - 3 genders

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses
 - 3 genders
- Latin text data is comparatively scarce

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses
 - 3 genders
- Latin text data is comparatively scarce
 - Historical documents

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses
 - 3 genders
- Latin text data is comparatively scarce
 - Historical documents
- Under-resourced and under-studied

- Latin is "morphologically rich"
 - 5 declensions
 - 4 tenses
 - 3 genders
- Latin text data is comparatively scarce
 - Historical documents
- Under-resourced and under-studied
 - few benchmarks for comparing results

3 Different Data Sources

- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique

- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique
 - Ohristian Latin 2.7 million tokens, 90 thousand unique

- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique
 - Ohristian Latin 2.7 million tokens, 90 thousand unique
 - S Full Latin 8.3 million tokens, 236 thousand unique
- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique
 - Ohristian Latin 2.7 million tokens, 90 thousand unique
 - S Full Latin 8.3 million tokens, 236 thousand unique

2 Model Types

- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique
 - Ohristian Latin 2.7 million tokens, 90 thousand unique
 - S Full Latin 8.3 million tokens, 236 thousand unique
- 2 Model Types
 - word2vec

- 3 Different Data Sources
 - Medieval Latin 1.7 million tokens, 75 thousand unique
 - Ohristian Latin 2.7 million tokens, 90 thousand unique
 - S Full Latin 8.3 million tokens, 236 thousand unique
- 2 Model Types
 - word2vec
 - Pasttext (n-grams)

After a thorough training of your model(s) we are excited to see how 'good' our embeddings are. So, we inspect a few of them.

The Evaluation Problem

After a thorough training of your model(s) we are excited to see how 'good' our embeddings are. So, we inspect a few of them.

1.09798884e+00	6.61867380e-01	-7.18478852e-82	1.08630925e-01
1.90411139e+00	-1.34148002e-01	1.13010979e+00	-1.08128226e+00
5.67232482e-02	-1.53587858e-01	-4.61597582e-81	2.20323277e+00
-2.83151940e-02	-1.61388491e+00	-7.17172861e-81	1.03687203e+00
9.62423146e-01	-1.09788142e+00	-2.44244242e+88	8.22242856e-01
-5.69651365e-01	-1.57382798e+00	1.92259873e+88	1.61573005e+00
-1.87173845e+08	-4.40778702e-01	8.33371878e-01	-3.92222732e-01
-5.92744529e-01	8.38984668e-01	8.04344654e-01	1.07055962e-01
-2.29991511e-01	-6.51594162e-01	-8.89630079e-01	-1.25787973e+00
-2.66330659e-01	-8.97910058e-01	-1.34007168e+00	-1.63498962e+00
2.19974113e+00	3.55621070e-01	1.38610697e+00	4.99659151e-01
1.83429384e+00	1.45139420e+00	1.27718891e+88	-5.23355544e-01
-1.48872185e+00	-8.93288265e-01	-2.76439548e-81	-1.15471005e+00
5.90652486e-01	-1.46288285e+00	-1.07289457e+88	2.24772835e+00
-6.43872533e-84	-8.49872853e-01	1.41535699e-01	-1.29253221e+00
1.33586717e+00	1.43089898e+00	-7.10735202e-01	3.68408872e-01
3.47683935e-01	1.00279522e+00	-9.98684585e-81	9.28291202e-01
1.26867567e+88	-1.19633090e+00	-1.00435853e+00	-6.27937138e-01
1.02863835e+00	-1.45649803e+00	-1.00423229e+00	-1.11265707e+00
-1.33893837e+08	8.99451971e-01	8.59849989e-81	8.97351146e-01
1.95721543e+00	-2.38958324e+00	6.98358438e-81	-2.54332781e+00
-7.80221343e-01	1.34824312e+00	-1.30275955e+00	4.19737228e-01
7.49867558e-01	1.43526709e-02	-3.36812735e-81	6.33926698e-81
-1.28516543e+00	-9.78036846e-01	-9.70386505e-01	1.48183321e+00
1.77720714e+00	-6.30774140e-01	6.73689793e-81	1.51666775e-01)

-0.2927009	-2.3539	-3.882364	-2.0755804	-8.23387848	0.83116352
-3.4240723	0.6804483	2.5297556	1.4924724	-2.4403913	-0.38286785
3.3442798	-8.45448813	-0.8306715	-0.03494536	8.31276862	1.6929202
-3.229696	-2.8762164	3.9146178	-0.32885213	8.6038931	-0.88103676
1.0879899	-1.7858647	2.5750897		-4.274682	-0.62027305
-1.0076166	0.8643299	-0.8952144	3.1832883	3.9998395	3.2829138
-1.5568957	8.27528418	-0.966296	1.0861672	-8.8834181	-2.5894414
	1.0475558	-2.3829036	-0.17971425	-2.8454487	
0.23126438	-0.58600175	2.3757585	-0.08425343	8.6372437	-2.4128644
	-8.44377814	-0.18394851	-3.542668		
0.38382525	3.3288282	0.4322284	-0.3159594	2.7113795	-4.814484
2.4388522	-2.5136967	3.5966437	3.757738	2.2040672	-0.1174969
-0.42889543		-0.10117842	2.6468835	2.686288	
-2.26379@6	-1.4581817	0.891239	0.47737953	8.6579282	2.549888
-0.7854796	-5.4956417	-0.9731244	-0.58446683	-8.5956649	-1.3335679
	-8.6824485		2.0075195	1.0156357	0.34581745
-2.6737473	1.6112593	2.4512193	0.465982		

1 3.4993453		2.7968842	1.8670502	1.7269794	2.849036
2.3116152	0.28173736	0.7484232	1.8855542		
3.8245388	2.2888986	0.62054646	3.8393073		
0.4298605	0.68544114	0.05531956	0.02740468	-0.06775122	0.7071461
8.6288845		-1.6065401	0.29958934		3.9588451
2.2673967	-2.428242	-1.5391635	1.5558674	3.338346	2.6921241
4.594245	1.6169897	4.448282	-3.3279974		1.1702842
0.8155618	-2.965235	1.2714497	-0.23951891	3.8141346	-0.52887446
-1.9785266	-3.3365355		-0.03013381	5.2083526	-0.47481996
-2.44593		-1.8394886	-0.06880338	1.7498951	-1.2576197
1.3884195	-2.5954428	-2.5381258	-1.4663447	-1.3752879	-1.2812922
2.5025816	2.6445158	-0.25558297	-1.6185617	-0.34789237	-0.43534958
-8.18697618	1.2172858	-3.026618	-1.9473468	-2.2698424	1.3854887
-2.340305		0.38164425			-7.2448053
-0.6058418	-1.5438882	0.6236882	6.8693827	0.98486584	1.1576533
-8.49797867	-1.5955713	-3.2862447	-0.39812623	0.4121893	2.5176299
2,6070173	-1.0555307	3.642642	1.1389123		

The Evaluation Problem

After a thorough training of your model(s) we are excited to see how 'good' our embeddings are. So, we inspect a few of them.

1.09798884e+00	6.61867380e-01	-7.18478852e-82	1.08630925e-01
1.90411139e+00	-1.34148002e-01	1.13818979e+88	-1.08128226e+00
5.67232482e-02	-1.53587858e-01	-4.61597582e-81	2.20323277e+00
-2.83151940e-02	-1.61388491e+00	-7.17172861e-81	1.03687203e+00
9.62423146e-01	-1.09788142e+00	-2.44244242e+88	8.22242856e-01
-5.69651365e-01	-1.57382798e+00	1.92259873e+88	1.61573005e+00
-1.87173845e+08	-4.40778702e-01	8.33371878e-81	-3.92222732e-01
-5.92744529e-01	8.38984668e-01	8.04344654e-01	1.07855962e-01
-2.29991511e-01	-6.51594162e-01	-8.89630079e-01	-1.25787973e+00
-2.66330659e-01	-8.97910058e-01	-1.34007168e+00	-1.63498962e+00
2.19974113e+08	3.55621070e-01	1.38618697e+88	4.99659151e-01
1.83429384e+00	1.45139420e+00	1.27718891e+88	-5.23355544e-01
-1.48872185e+00	-8.93288265e-01	-2.76439548e-81	-1.15471005e+00
5.90652485e-01	-1.46288285e+00	-1.07289457e+88	2.24772835e+00
-6.43872533e-84	-8.49872853e-01	1.41535699e-01	-1.29253221e+00
1.33586717e+00	1.43089898e+00	-7.10735202e-01	3.68408872e-01
3.47683935e-01	1.00279522e+00	-9.98684585e-81	9.28291202e-01
1.26867567e+88	-1.19633090e+00	-1.00435853e+00	-6.27937138e-01
1.02863835e+00	-1.45649803e+00	-1.00423229e+88	-1.11265707e+00
-1.33893837e+08	8.99451971e-01	8.59849989e-81	8.97351146e-01
1.95721543e+00	-2.38958324e+00	6.98358438e-81	-2.54332781e+00
-7.80221343e-01	1.34824312e+00	-1.30275955e+00	4.19737228e-01
7.49867558e-01	1.43526709e-02	-3.36812735e-81	6.33926698e-81
-1.28516543e+00	-9.78036846e-01	-9.78386585e-81	1.48183321e+00
1.77720714e+00	-6.30774140e-01	6.73689793e-81	1.51666775e-01)

[-0.2927009		-3.882364	-2.0755884	-8.23387848	0.83116352
-3.4240723	8.6884483	2.5297556	1.4924724	-2.4403913	-0.38286785
3.3442798	-8.45448813	-0.8306715	-0.03494536	8.31276862	1.6929282
-3.229696	-2.8762164	3.9146178	-0.32885213	8.6038931	-0.88103676
1.0879899	-1.7858647	2.5750897		-4.274682	-0.62827385
-1.0076166	8.8643299	-0.8952144	3.1832883	3.9998395	3.2829138
-1.5568957	8.27528418	-0.966296	1.0861672	-8.8834181	-2.5894414
-1.9215351	1.0475558	-2.3829036	-0.17971425	-2.8454487	
0.23126438	-0.58688175	2.3757585	-0.08425343	8.6372437	-2.4128644
-1.5134279	-8.44377814	-0.18394851	-3.542668	-2.3582625	1.5922571
0.38382525	3.3288282	0.4322284	-0.3159594		-4.814484
2.4380522	-2.5136967	3.5966437		2.2048672	-0.1174969
-0.42889543	-2.2368116	-0.10117842	2.6468835	2.686288	-1.93117
-2.2637906	-1.4581817	0.891239	0.47737953	8.6579282	2.549888
-0.7854796	-5.4956417	-0.9731244	-0.58446683	-8.5956649	-1.3335679
3.1565733	-8.6824485	1.283595	2.0075195	1.0156357	0.34581745
-2,6737473	1.6112593	2,4512193	0.465982		

1 3.4993453	-0.75153375	2.7968842	1.8670502	1.7269794	2.849036
2.3116152	0.28173736	0.7484232	1.8855542	-0.17695513	0.75033337
3.8245388	2.2888986	0.62054646	3.8393073		
0.4298605	0.68544114	0.05531956	0.02740468	-0.06775122	0.7071461
8.6288845		-1.6065401	0.29958934		3.9588451
2.2673967	-2.428242	-1.5391635	1.5558674	3.338346	2.6921241
4.594245	1.6169897	4.448282	-3.3279974		1.1702842
0.8155618	-2.965235	1.2714497	-0.23951891	3.8141346	-0.52887446
-1.9785266	-3.3365355	-2.4357328	-0.03013381	5.2083526	-0.47481996
-2.44593		-1.8394886	-0.06880338	1.7498951	-1.2576197
1.3884195	-2.5954428	-2.5381258	-1.4663447		-1.2812922
2.5025816	2.6445158	-0.25550297	-1.6185617	-0.34789237	-0.43534958
-0.18697618		-3.026618	-1.9473468	-2.2698424	1.3854887
-2.340305		0.38164425	-2.977643	2.29641	-7.2448053
-0.6058418	-1.5438882	0.6236882	6.8693827	0.98486584	1.1576533
-8.49797867	-1.5955713	-3.2862447	-0.39812623	8.4121893	2.5176299
2.6070173	-1.0555307	3.642642	1.1389123		

quod erat demonstrandum

The Evaluation Problem

After a thorough training of your model(s) we are excited to see how 'good' our embeddings are. So, we inspect a few of them.

1.09798884e+00	6.61867380e-01	-7.18478852e-82	1.08630925e-01
1.90411139e+00	-1.34148002e-01	1.13818979e+88	-1.08128226e+00
5.67232482e-02	-1.53587858e-01	-4.61597582e-81	2.20323277e+00
-2.83151940e-02	-1.61388491e+00	-7.17172861e-81	1.03687203e+00
9.62423146e-01	-1.09788142e+00	-2.44244242e+88	8.22242856e-01
-5.69651365e-01	-1.57382798e+00	1.92259873e+88	1.61573005e+00
-1.87173845e+00	-4.40778702e-01	8.33371878e-81	-3.92222732e-01
-5.92744529e-01	8.38984668e-01	8.04344654e-01	1.07855962e-01
-2.29991511e-01	-6.51594162e-01	-8.89630079e-01	-1.25787973e+00
-2.66330659e-01	-8.97910058e-01	-1.34007168e+00	-1.63498962e+00
2.19974113e+08	3.55621070e-01	1.38618697e+88	4.99659151e-01
1.83429384e+00	1.45139420e+00	1.27718891e+88	-5.23355544e-01
-1.48872185e+00	-8.93288265e-01	-2.76439548e-81	-1.15471005e+00
5.90652485e-01	-1.46288285e+00	-1.07289457e+88	2.24772835e+00
-6.43872533e-84	-8.49872853e-01	1.41535699e-01	-1.29253221e+00
1.33586717e+00	1.43089898e+00	-7.10735202e-01	3.68408872e-01
3.47683935e-01	1.00279522e+00	-9.98684585e-81	9.28291202e-01
1.26867567e+88	-1.19633090e+00	-1.00435853e+00	-6.27937138e-01
1.02863835e+00	-1.45649803e+00	-1.00423229e+88	-1.11265707e+00
-1.33893837e+08	8.99451971e-01	8.59849989e-81	8.97351146e-01
1.95721543e+00	-2.38958324e+00	6.98358438e-81	-2.54332781e+00
-7.80221343e-01	1.34824312e+00	-1.30275955e+00	4.19737228e-01
7.49867558e-01	1.43526709e-02	-3.36812735e-81	6.33926698e-81
-1.28516543e+00	-9.78036846e-01	-9.78386585e-81	1.48183321e+00
1.77720714e+00	-6.30774140e-01	6.73689793e-81	1.51666775e-01)

-0.2927009		-3.882364	-2.0755884	-8.23387848	0.83116352
-3.4240723	0.6804483	2.5297556	1.4924724	-2.4403913	-0.38286785
3.3442798	-0.45448813	-0.8306715	-0.03494536	8.31276862	1.6929202
-3.229696	-2.8762164	3.9146178	-0.32885213	8.6038931	-0.88103676
1.0879899	-1.7858647	2.5750897		-4.274682	-0.62827385
-1.0076166	0.8643299	-0.8952144	3.1832883	3.9998395	3.2829138
-1.5568957	8.27528418	-0.966296	1.0861672	-8.8834181	-2.5894414
-1.9215351	1.0475558	-2.3829036	-0.17971425	-2.8454487	
0.23126438	-0.58680175	2.3757585	-0.08425343	8.6372437	-2.4128644
-1.5134279	-0.44377014	-0.18394851	-3.542668	-2.3582625	1.5922571
0.38382525	3.3288282	0.4322284	-0.3159594		-4.814484
2.4388522	-2.5136967	3.5966437		2.2048672	-0.1174969
-0.42889543		-0.10117842	2.6468835	2.686288	
-2.2637906	-1.4581017	0.891239	0.47737953	8.6579282	2.549888
-0.7854796	-5.4956417	-0.9731244	-0.58446683	-8.5956649	-1.3335679
	-8.6824485		2.0075195	1.0156357	0.34581745
-2.6737473	1.6112593	2,4512193	0.465982		

3.4993453	-0.75153375	2.7968842	1.8670582	1.7269794	2.849036
	0.28173736	0.7484232	1.8855542		
3.8245388	2.2888986	0.62054646	3.8393073		
0.4298605	0.68544114	0.05531956	0.02740468	-0.06775122	0.7071461
8.6288845		-1.6065401	0.29958934		3.9588451
2.2673967	-2.428242	-1.5391635	1.5558674	3.338346	2.6921241
4.594245	1.6169897	4.448282	-3.3279974		1.1702842
0.8155618	-2.965235	1.2714497	-0.23951891	3.8141346	-0.52887446
-1.9785266	-3.3365355	-2.4357328	-0.03013381	5.2083526	-0.47481996
-2.44593		-1.8394886	-0.06880338	1.7498951	-1.2576197
1.3884195	-2.5954428	-2.5381258	-1.4663447	-1.3752879	-1.2812922
2.5025816	2.6445158	-0.25558297	-1.6185617	-0.34789237	-0.43534958
-0.18697618		-3.026618	-1.9473468	-2.2698424	1.3854887
-2.340305	4.3331575	0.38164425	-2.977643	2.29641	-7.2448053
-0.6058418	-1.5438882	0.6236882	6.8693827	0.98486584	1.1576533
-8.49797867	-1.5955713	-3.2862447	-0.39812623	0.4121893	2.5176299
2.6070173	-1.0555307	3.642642	1.1389123		

quod

erat

demonstrandum

How to evaluate 'goodness'?

How to evaluate 'goodness'?

Solution

Use as input to some other downstream NLP task

How to evaluate 'goodness'?

Solution

- Use as input to some other downstream NLP task
- Oevise 'evaluation tasks' and test performance

How to evaluate 'goodness'?

Solution

- Use as input to some other downstream NLP task
- ② Devise 'evaluation tasks' and test performance

Desirable Attributes

How to evaluate 'goodness'?

Solution

- Use as input to some other downstream NLP task
- ② Devise 'evaluation tasks' and test performance

Desirable Attributes

• capture semantic similarity

How to evaluate 'goodness'?

Solution

- Use as input to some other downstream NLP task
- ② Devise 'evaluation tasks' and test performance

Desirable Attributes

- capture semantic similarity
- capture syntactic similarity

Evam	n	DC
LAIII	μ	C.S

pirum, pruna, baca, olea, denarius **pear**, **plum**, **berry**, **olive**, **denarius** Can you pick the odd one out?

Examples

consul, tribunus, praetor, magistris, episcopi
consul, tribune, praetor, magister, bishop
Can you pick the odd one out?

Examples

homines, feminae, liberi, vir, fratres **men, women, children, man, brothers** Can you pick the odd one out?

• Pick 2 categories of words

- Pick 2 categories of words
- Form a grouping of k in-words 1 out-word

- Pick 2 categories of words
- Form a grouping of k in-words 1 out-word
- Find the mean of the vectors in the group (the center)

- Pick 2 categories of words
- Form a grouping of k in-words 1 out-word
- Find the mean of the vectors in the group (the center)
- Compute the cosine distance between each word and the center

- Pick 2 categories of words
- Form a grouping of k in-words 1 out-word
- Find the mean of the vectors in the group (the center)
- Compute the cosine distance between each word and the center
- Pick the word with the largest distance as the odd-one-out

- Pick 2 categories of words
- Form a grouping of k in-words 1 out-word
- Find the mean of the vectors in the group (the center)
- Compute the cosine distance between each word and the center
- Pick the word with the largest distance as the odd-one-out
- Check to see if chosen word is from the out-category

Another strategy: look at what's nearby

Another strategy: look at what's nearby

miles	soldier
milito	to be a soldier
centurio	centurion
exerceo	train
legio	legion
cohors	cohort/company
militaris	military
dux	leader
cohorto	to exhort
castra	camp
hostis	enemy

Table: Top 10 most similar words

Another strategy: look at what's nearby

denarius	coin $(1/7 \text{ oz silver})$
talentum	talent
nummus	money
uncia	ounce
sestertius	coin $(1/4 ext{ of a denarius})$
deni	group of ten
centum	one hundred
quinquageni	fifties
viceni	twenties
centeni	hundreds
ducenti	two hundred

Table: Top 10 most similar words

Top K Evaluation

Examples

caesar

Top K Evaluation

Examples

caesar

miles | antonius | rex | roma

Examples

caesar

miles | antonius | rex | roma

caesaris | caesarem | caesare | pompeius | antonius | pompeium

Top K Evaluation

Examples

miles | antonius | rex | roma

caesaris | caesarem | caesare | pompeius | antonius | pompeium

Scores

Nate Stringham (Pomona College)

Scores

category-in-topk accuracy = $\frac{1}{6}$

Nate Stringham (Pomona College)

Scores

category-in-topk accuracy =
$$\frac{1}{6}$$

topk-in-category accuracy = $\frac{1}{4}$

• Create a category of similar words

- Create a category of similar words
- Pick one word from the category and find the top k closest vectors

- Create a category of similar words
- Pick one word from the category and find the top k closest vectors
- Find matches by comparing top k words to the unused words in our category
To play the top k game

- Create a category of similar words
- Pick one word from the category and find the top k closest vectors
- Find matches by comparing top k words to the unused words in our category
- Calculate a score by dividing by either

To play the top k game

- Create a category of similar words
- Pick one word from the category and find the top k closest vectors
- Find matches by comparing top k words to the unused words in our category
- Calculate a score by dividing by either

• k

To play the top k game

- Create a category of similar words
- Pick one word from the category and find the top k closest vectors
- Find matches by comparing top k words to the unused words in our category
- Calculate a score by dividing by either
 - k
 - ${\scriptstyle \bullet}\,$ the size of the category 1

From Tasks to Accuracy Scores

Problem

How to test the model as a whole?

From Tasks to Accuracy Scores

Problem

How to test the model as a whole?

Solution

We construct a test set of words separated into categories of interest. Those categories form the basis for performing our two evaluation tasks.

From Tasks to Accuracy Scores

Problem

How to test the model as a whole?

Solution

We construct a test set of words separated into categories of interest. Those categories form the basis for performing our two evaluation tasks.

religious titles	religious figures	countries	cities
papam	ambrosius	hispania	roma
archiepiscopus	augustini	gallia	mediolanum
episcopus	gregorius	italia	byzantium
apostolus	aquinas	germania	carthago
presbyter	hieronymus	graecia	troiae
propheta	eusebius	syria	NA

Table: A portion of my test set

• Christian

- Christian
 - odd-one-out = .815

- Christian
 - odd-one-out = .815
 - topk-in-category = .036

- Christian
 - odd-one-out = .815
 - topk-in-category = .036
 - Category-in-topk = .053

- Christian
 - odd-one-out = .815
 - topk-in-category = .036
 - Category-in-topk = .053
- Medieval

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019
 - category-in-topk = .029

Christian

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019
 - category-in-topk = .029

Full

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019
 - category-in-topk = .029
- Full
 - odd-one-out = .825

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019
 - category-in-topk = .029
- Full
 - odd-one-out = .825
 - topk-in-category = .052

- odd-one-out = .815
- topk-in-category = .036
- Category-in-topk = .053
- Medieval
 - odd-one-out = .722
 - topk-in-category = .019
 - category-in-topk = .029
- Full
 - odd-one-out = .825
 - topk-in-category = .052
 - category-in-topk = .075

DIXI